In situ analysis of changes in telomere size during replicative aging and cell transformation

نویسندگان

  • S Henderson
  • R Allsopp
  • D Spector
  • S S Wang
  • C Harley
چکیده

Telomeres have been shown to gradually shorten during replicative aging in human somatic cells by Southern analysis. This study examines telomere shortening at the single cell level by fluorescence in situ hybridization (FISH). FISH and confocal microscopy of interphase human diploid fibroblasts (HDFs) demonstrate that telomeres are distributed throughout the nucleus with an interchromosomal heterogeneity in size. Analysis of HDFs at increasing population doubling levels shows a gradual decrease in spot size, intensity, and detectability of telomeric signal. FISH of metaphase chromosomes prepared from young and old HDFs shows a heterogeneity in detection frequency for telomeres on chromosomes 1, 9, 15, and Y. The interchromosomal distribution of detection frequencies was similar for cells at early and late passage. The telomeric detection frequency for metaphase chromosomes also decreased with age. These observations suggest that telomeres shorten at similar rates in normal human somatic cels. T-antigen transformed HDFs near crisis contained telomere signals that were low compared to nontransformed HDFs. A large intracellular heterogeneity in telomere lengths was detected in two telomerase-negative cell lines compared to normal somatic cells and the telomerase-positive 293 cell line. Many telomerase-negative immortal cells had telomeric signals stronger than those in young HDFs, suggesting a different mechanism for telomere length regulation in telomerase-negative immortal cells. These studies provide an in situ demonstration of interchromosomal heterogeneity in telomere lengths. Furthermore, FISH is a reliable and sensitive method for detecting changes in telomere size at the single cell level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telomere Shortening Accompanies Increased Cell Cycle Activity during Serial Transplantation of Hematopoietic Stem Cells

Reactivation of telomerase and maintenance of telomere length can lead to the prevention of replicative senescence in some human somatic cells grown in vitro. To investigate whether telomere shortening might also play a role in the limitation of hematopoietic stem cell (HSC) division capacity in vivo, we analyzed telomere length during serial transplantation of murine HSCs. Southern blot analys...

متن کامل

استفاده از سلول بنیادی مزانشیمی در درمان: کیفیت یا کمیت؟

Background & objective: Mesenchymal stem cells (MSCs) are presently isolated from various human tissues such as bone marrow. These cells have relatively high replication potential and can differentiate into various cell lineages with mesodermal and non-mesodermal origin and therefore, show promising in treatment of diseases. Their striking features like availability of source, ease of isolation...

متن کامل

تلومراز و مهار آن در سرطان: مقاله مروری

Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal" mso-tsty...

متن کامل

O-14: In vitro TERT mRNA Expression in Relation to Chromosomal Stability, Senescence and Telomere Length and SCNT Cloned Embryo Production in Bubalus Bubalis

Background: Somatic cell nuclear transfer (SCNT) provides an appealing alternative for the conservation and improvement of genetic material of unique and endangered species. An important prerequisite for successful SCNT is the availability of good quality donor cells, as normal embryo development is dependent upon proper reprogramming of the donor genome so that embryonic genes can be appropria...

متن کامل

Telomere length and the expression of natural telomeric genes in human fibroblasts.

Progressive telomere shortening occurs with division of normal human cells, and eventually leads to replicative senescence. The mechanism by which the shortened telomeres cause growth arrest is largely unknown. Transcriptional silencing of genes adjacent to telomeres, also called telomere position effect, has been hypothesized as a possible mechanism of telomere-mediated senescence. However, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 134  شماره 

صفحات  -

تاریخ انتشار 1996